
Git au service
de l’intégration
continue

Sandy Ingram

Spring 2024 – Micro 371
• Architecture

Software

▪ Intégration Continue
• Définition de l’Intégration Continue
• Lien avec le Déploiement Continu
• Lien (ou rôle de Git)

▪ Zoom sur Git
• Commandes de base Git
• Git “stages”
• “Conventionnels commits”
• Gestion des conflits
• GitFlow vs Développement “Trunk-based”

Plan du cours
A

R
C

H
IT

E
C

TU
R

E
 L

O
G

IC
IE

LL
E

S
an

dy
 In

gr
am

2

3Intégration Continue (CI)

▪ CI est une pratique de développement incitant une équipe de
développement logiciel de mettre en commun (intégrer) son
travail fréquemment (plusieurs fois par jour)

▪ Grâce à des tests automatiques, le code “intégré” est
automatiquement vérifié par détecter les erreurs relatives et
les corriger au plus vite.

.

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E

4Avantages de l’intégration Continue (CI)

▪ La CI permet de maintenir une base de code stable et fiable.
▪ Elle facilite la livraison agile de code: rapide et de haute

qualité.
▪ Elle favorise la collaboration et la communication fréquente

au sein d’une équipe de développement

.

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E

5Et Déploiement Continu (CD)?

▪ Le CD se concentre le déploiement automatique des
applications en “production”.

▪ L’objectif est de fluidifier et automatiser (le plus possible) le
processus de mise en production.

▪ La mise en production n’a lieu que si les tests d’intégration
sont réussis suite à une mise à jour du code (CI) en assurant
les conditions de sécurité.

▪ Avantages: agilité, mise à jour fréquente, et satisfaction des
utilisateurs finaux.

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E

6Définition de GIT

▪ Git est gratuit et “open source”: il offre un système puissant de contrôle des
versions du code (CVS: Code Versioning System); Il facilite la gestion et la
mise à jour du codebase partagé.

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E

Pour illustrer, à droite: on voit deux
“branches” (“testing” et “master”) d’un
répertoire git,
et leurs commits communs et divergents,
en série “temporelle”).

https://git-scm.com/
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell#ch03-git-branching

7Définition de GIT

▪ Contrairement à d’autres CVS, Git prend une “snapshot” de l’état des
fichiers après une mise à jour et stocke une référence à ce état. Si un fichier
n’a pas changé, GIT garde juste un lien vers la version précédente déjà
stockée.

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E

“Delta-based Version Control”: sauvegarde les
changements dans chaque version

Git sauve l’état des fichiers (ou mini file système) après chaque
version. B, A1, A2, et C2 n’ayant pas changé, on n’en garde qu’un
lien vers la version précédente.

▪ Git permet le traçage des changements du codebase:
• en local pour permettre des développements parallèles
• et en ligne (partagé) pour assurer la synchronisation fréquente => CI

▪ Il intègre des fonctionnalités puissantes de branchement et “merge” (fusion”) des
branches, facilitate la mise à jour fréquente de code partagé.

▪ Il intègre également des pipelines CI/CD facilement et configurables permettant des
vérifications et des déploiements automatiques, chaque fois qu’un code est “poussé”
dans le répertoire en ligne.

▪ Il offre aussi la possibilité de “rollback” ou “revert”: annuler une mise à jour ou
retourner sur une version précédente du code.

▪ GIT facilite aussi la revue de code (“code review”) : les développeurs peuvent faire
des “pulls requests”.

11Git joue un rôle fondamental pour le
CI/CD

Zoom sur git

13Commandes git de base (Cheat Sheet)

▪ (En option) Github education propose une GIT Cheat Sheet plus “avancée”

Source:
Atlassian.com

git reflog permet de récupérer des commits perdus
 et n’est pas affecté par “git reset –hard”

https://www.atlassian.com/git/tutorials/atlassian-git-cheatsheet
https://education.github.com/git-cheat-sheet-education.pdf

- Il faut pouvoir expliquer et différencier toutes les commandes du
cheatsheet d’Atlassian (slide précédent).

- Il faut pouvoir expliquer la différence entre git reset soft et git reset hard.

14Pour l’examen:

15Les 3 états principaux de GIT
(Three States)

Source

1. Un fichier modifié est dans votre
“working directory” et n’est pas
encore intégré à votre base de
données git.

2. Un fichier “staged” a été
sélectionné pour faire partie du
prochain commit.

3. Un fichier “commited” est stocké
dans la base de données
localement.

4. Uniquement après un git push,
le code sur le repertoire en ligne
est mise à jour.

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

16GIT “HEAD”

Source

HEAD se réfère normalement au dernier commit de la branche “active”
(celle “checked out”) ou la branche principale.

https://circleci.com/blog/git-detached-head-state/

17Les états de Git représentés dans un
autre schéma

Source

https://www.geeksforgeeks.org/git-index/

19Git Reset

git add git commit

git checkout

Working
Directory

.git
Repository

Staging Area
(Index)

git reset –soft

git reset –mixed (action par défault)

git reset –hard

❖ git reset --soft: (“uncommit”): bouge
HEAD au commit spécifié (par défaut
celui précédent le dernier commit) mais
garde le commit “annulé” dans l’index
(facilitant typiquement un autre commit
plus sélectif par exemple).

❖ git reset --mixed: bouge HEAD au
commit spécifié et modifie l’état de
l’index pour représenter le commit
spécifié.

❖ git reset --hard: supprime
complètement le commit à annuler,
bouge HEAD au commit spécifié et
remet aussi l’état de l’index et du
working directory à celui spécifié. Tout
changement dans le “working directory”
pas “staged”, sera perdu.

❖

➢ Par défaut c’est le dernier commit (HEAD) qui est annulé et HEAD référencé le
précédent, mais on peut tout à fait annuler plusieurs commits et spécifier le nouveau
commit à prendre en compte en utilisant HEAD~n pour revenir en arrière jusqu’à n
commits.

➢ Par exemple avec git reset --mixed HEAD ~3:, l’état de l’index (Staging area)
correspond à son état avant les 3 derniers commits précédent HEAD, et le “working
directory n’est pas touché.

❖ Une autre option serait d’utiliser git reset HEAD^, HEAD^^ ou HEAD^2 pour indiquer
respectivement le parent direct, le parent du parent, et le deuxième parent (en cas de
fusion de branches).

➢ Selon vous, comment serait la syntaxe de l’option par défaut (le dernier commit?)

20Spécification d’un ou plusieurs avec git
reset

Demo Live :Supposer une situation oü un fichier avec des vrais mot de passe a été poussé
dans répertoire git partagé. Après quelques commits, on le remarque; le fichier était effacé, et
un nouveau commit est poussé sans ce fichier. Toute personne qui clone/pull le répertoire à
ce moment là, n’a pas accès à ce fichier, mais la trace dans les logs (historique) des commits
est toujours là, on peut même y voir le contenu du fichier! Voici une démo de comment on
peut résoudre ce problème en ré-écrivant l’historique de git.

22Slide Optionnel
Demo avec GIT Reset et réécriture de “l’histoire”

https://gitlab.forge.hefr.ch/sandy.ingram/example-softeng-git

23Développement Trunk-based vs GitFlow

GitFlow Trunk-Based

Avec moins de “formalisme”
que gitflow, le dév.
Trunk-based est
adapté aux équipes avec
développeurs “seniors”, aux
situations nécessitant des
itérations rapides, et en
début de projet.

Gitflow est pratique pour les
gros projets “open source”,
les produits complexes, et
avec des développeurs
“juniors”. Les revues de
code s’effectuent sur les
changements des branches
concernées.

Source

Ici il n’y a plus vraiment de
branches “develop” ni
“release branches”
formelles. Ce qu’on
représente par “release
branches” un marquage ou
tag du commit poussé sur
master.

Ici on remarque des
“features branches” de
longue durée, un
processus plus formel de
déploiement avec aussi de
“release branches”
constituant une étape
intermédiaire de test avant
le déploiement définitif sur la
branche master.

* Dans les deux cas, le tag ou marquage du commit se fait au moment de la mise à jour de la branche master.

https://www.toptal.com/software/trunk-based-development-git-flow

1. Réaliser un commit et un push vers le répertoire git “remote”.

2. Ouvrir un “Pull Request” (ou PR):

a. Sur gitlab, on ouvre un MR “Merge Request” (sachant que la commande pull = fetch + merge!)

b. L’idée est de faire une demande formelle de revue de code et approbation pour intégrer son

code d’une branche de développement dans la branche principale du projet (master).

3. Un autre développeur réalise une revue de code, fournit un feedback ni nécessaire, des changements

pourront être nécessaires

4. Une fois la demande approuvée, la merge request est approuvée et le code est intégré.

25Revue de codes
avec git

❖ Lors de la fusion (“merge”) de code entre deux branches, ou la mise à jour

d’une branche locale (avec un git pull), des changements effectués dans

les mêmes fichiers, peuvent générer des “conflits”

➢ on peut déléguer la résolution de ces conflits à git, en précisant quelle

version privilégier (--ours vs --theirs)

➢ ou on les résout manuellement avec l’aide d’un éditeur de texte: en

ouvrant les deux versions du même fichier “side-by-side” pour

comparer la différence, sachant que git marque la différence avec

(des"<<<<<<<", "=======", ">>>>>>>").

➢ L’option “Blame” permet également de voir à quel moment une ligne

dans un fichier a été modifié, par qui et dans quel commit.

27Gestion des conflits

29“Conventional commits”

▪ Des spécifications pour rendre les messages de commits, plus
“propres” et faciles à lire pour les humains et les machines.

message de commits

Body et footer optionnels

type Exemple 1

Exemple 2

Exemple 3

https://www.conventionalcommits.org/en/v1.0.0/

➢ Utiliser dans le message du commit un croisillon (#) suivi du numéro de l’issue pour
faire un lien entre le commit et le “issue”. Normalement, un log de cette action sera
automatiquement ajouté dans le “issue” en question.

➢ Dans les “issues” fermés en cours, laisser un commentaire en spécifiant un lien (URL)
vers le commit réalisés, tagger les membres concernés du groupe en expliquant
brièvement ce qui a été réalisé.

➢ Suivre la démo en classe en guise d’exemple.

30Liens entre gitlab board “issues” et
commits

1. Message de commits selon “conventionnel commits”, historique des

commits “propres”

2. Gestion des branches avec choix clair en trunk-based development

ou git flow (ou autre approche à justifier)

3. Code review (pull request)

4. Utilisation du gitlab board pour la documentation et planification des

tâches avec lien aux commits pour tâche accomplies.

31Attentes pour le projet

S
an

dy
 In

gr
am

32

A
R

C
H

IT
E

C
TU

R
E

 L
O

G
IC

IE
LL

E

▪

▪ https://git-scm.com/
▪ https://git-scm.com/docs/git-reset
▪ https://www.atlassian.com/continuous-delivery/continuous-integration/trunk-based-development
▪ https://acompiler.com/git-head/
▪ Extra: https://circleci.com/blog/git-detached-head-state/
▪ Extra: Rebase vs Merge: https://acompiler.com/git-head/#tve-jump-17716bdd851

Références

https://git-scm.com/
https://git-scm.com/docs/git-reset
https://www.atlassian.com/continuous-delivery/continuous-integration/trunk-based-development
https://acompiler.com/git-head/
https://circleci.com/blog/git-detached-head-state/
https://acompiler.com/git-head/#tve-jump-17716bdd851

