=PiL

Git au service
de I'intégration
continue

Sandy Ingram

+ Architecture

Software Sprlng 2024 — Micro 371

=PrL

B ARCHITECTURE LOGICIELLE

Plan du cours

= Intégration Continue
« Deéfinition de I'Intégration Continue
» Lien avec le Déploiement Continu
* Lien (ou réle de Git)

= Zoom sur Git
« Commandes de base Git
+ Git “stages”
 “Conventionnels commits”
» Gestion des conflits

* GitFlow vs Développement “Trunk-based”

N

Sandy Ingram

=PFL Intégration Continue (ClI)

= Cl est une pratique de développement incitant une équipe de
développement logiciel de mettre en commun (intégrer) son
travail frequemment (plusieurs fois par jour)

= Grace a des tests automatiques, le code “intégré” est
automatiquement vérifié par détecter les erreurs relatives et
les corriger au plus vite.

B ARCHITECTURE LOGICIELLE

=PFL Avantages de l'intégration Continue (Cl)

= La Cl permet de maintenir une base de code stable et fiable.

= Elle facilite la livraison agile de code: rapide et de haute
qualite.

= Elle favorise la collaboration et la communication fréequente
au sein d’'une equipe de développement

B ARCHITECTURE LOGICIELLE

=L Et Déploiement Continu (CD)?

= Le CD se concentre le déploiement automatique des
applications en “production”.

= L'objectif est de fluidifier et automatiser (le plus possible) le
processus de mise en production.

= La mise en production n’a lieu que si les tests d’'intégration
sont réussis suite a une mise a jour du code (Cl) en assurant
les conditions de sécurité.

= Avantages: agilité, mise a jour frequente, et satisfaction des
utilisateurs finaux.

B ARCHITECTURE LOGICIELLE

=PFL Définitionde GIT

= Git est gratuit et “open source”: il offre un systéme puissant de contrdle des

versions du code (CVS: Code Versioning System); Il facilite la gestion et la
mise a jour du codebase partageé.

Pour illustrer, a droite: on voit deux
‘branches” (‘testing” et “master”) d’un

repertoire git, }
et leurs commits communs et divergents, L e
en serie “temporelle”). N DN N

87ab2

"

ARCHITECTURE LOGICIELLE

https://git-scm.com/
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell#ch03-git-branching

=PrL

B ARCHITECTURE LOGICIELLE

Définitionde GIT

Contrairement a d’autres CVS, Git prend une “snapshot” de I'état des
fichiers aprés une mise a jour et stocke une référence a ce état. Si un fichier
n’a pas changé, GIT garde juste un lien vers la version précédente déja
stockee.

Checkins Over Time Checkins Over Time

=PFL Git joue un role fondamental pour le
Cl/CD

= Git permet le tragage des changements du codebase:
* en local pour permettre des développements paralléles
+ eten ligne (partagé) pour assurer la synchronisation fréquente => Cl

= |l intégre des fonctionnalités puissantes de branchement et “merge” (fusion”) des
branches, facilitate la mise a jour fréquente de code partagé.

= Ilintégre également des pipelines CI/CD facilement et configurables permettant des

vérifications et des déploiements automatiques, chaque fois qu’un code est “poussé
dans le répertoire en ligne.

= |l offre aussi la possibilité de “rollback” ou “revert”: annuler une mise a jour ou
retourner sur une version précédente du code.

= GIT facilite aussi la revue de code (“code review”) : les développeurs peuvent faire
des “pulls requests”.

Zoom sur git

=PrL

GIT BASICS

ommandes git de base (Cheat Sheet)

REWRITING GIT HISTORY

git init
<directory>

git clone <repo>

git config
user.name <name>

git add
<directory>

git commit -m
"<message>"

git status

git log

git diff

UNDOING CHANGES

Create empty Git repo in specified directory. Run with no
arguments to initialize the current directory as a git repository.

Clone repo located at <repo> onto local machine. Original repo can be
located on the local filesystem or on a remote machine via HTTP or SSH.

Define author name to be used for all commits in current repo. Devs
commonly use --global flag to set config options for current user.

Stage all changes in <directory> for the next commit.
Replace <directory> with a <file> to change a specific file.

Commit the staged snapshot, but instead of launching
a text editor, use <message> as the commit message.

List which files are staged, unstaged, and untracked.

Display the entire commit history using the default format.
For customization see additional options.

Show unstaged changes between your index and
working directory.

git commit
——amend

git rebase <base>

git reflog

GIT BRANCHES

Replace the last commit with the staged changes and last commit
combined. Use with nothing staged to edit the last commit’s message.

Rebase the current branch onto <base>. <base> can be a commit ID,
branch name, a tag, or a relative reference to HEAD.

Show a log of changes to th
Add --relative-date flag to show date info or —-all to show all refs.

git reflog permet de récupérer des commits perdus
et n'est pas affecté par “git reset —hard”

git branch

git checkout -b
<branch>

git merge <branch>

List all of the branches in your repo. Add a <branch> argument to
create a new branch with the name <branch>.

Create and check out a new branch named <branch>.
Drop the -b flag to checkout an existing branch.

Merge <branch> into the current branch.

REMOTE REPOSITORIES

git remote add
<name> <url>

git revert
<commit>

git reset <file>

git clean -n

Create new commit that undoes all of the changes made in
<commit>, then apply it to the current branch.

Remove <file> from the staging areq, but leave the working directory
unchanged. This unstages a file without overwriting any changes.

Shows which files would be removed from working directory.
Use the -f flag in place of the -n flag to execute the clean.

» (En option) Github education propose

git fetch
<remote> <branch>

git pull <remote>

git push
<remote> <branch>

Create a new connection to a remote repo. After adding a remote,
you can use <name> as a shortcut for <url> in other commands.

Fetches a specific <branch>, from the repo. Leave off <branch>
to fetch all remote refs.

Fetch the specified remote’s copy of current branch and
immediately merge it into the local copy.

Push the branch to <remote>, along with necessary commits and
objects. Creates named branch in the remote repo if it doesn’t exist.

une GIT Cheat Sheet plus “avancée”

Source:
Atlassian.com

https://www.atlassian.com/git/tutorials/atlassian-git-cheatsheet
https://education.github.com/git-cheat-sheet-education.pdf

=PrL

Pour 'examen:

- Il faut pouvoir expliquer et différencier toutes les commandes du
cheatsheet d’Atlassian (slide précédent).

- Il faut pouvoir expliquer la différence entre git reset soft et git reset hard.

14

=Pl | es 3 états principaux de GIT *
(Three States)

Working Staging .git directory
Directory Area (Repository)

Source

Checkout the project

Un fichier modifié est dans votre
“working directory” et n’est pas
encore intégré a votre base de
données git.

Un fichier “staged” a été
sélectionné pour faire partie du
prochain commit.

Un fichier “commited” est stockeé
dans la base de données
localement.

Uniquement aprés un git push,
le code sur le repertoire en ligne
est mise a jour.

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

=t GIT “HEAD” "

-0+-0+-0

el37e%b. . 56d41138.. 077e370..
first commit latest commit

- Main

HEAD se référe normalement au dernier commit de la branche “active”
= (celle “checked out”) ou la branche principale.

Source

https://circleci.com/blog/git-detached-head-state/

ePFL Les états de Git représentés dans un
autre schéma

commit -a
commit
add (-u)
push
workspace index :%‘g:: r$2\;;e
pull or rebase
checkout | head
¢ l fetch
checkout
diff | head
diff

Source

https://www.geeksforgeeks.org/git-index/

=PFL Git Reset

Working

Directo

.git
Reposi

Staging Area

git checkout
git reset —soft

git reset —mixed (action par défault)

git reset —hard

L X4

X3
<

X3
<

2
L X4

git reset --soft: (“'uncommit”): bouge
HEAD au commit spécifié (par défaut
celui précédent le dernier commit) mais
garde le commit “annulé” dans I'index
(facilitant typiquement un autre commit
plus sélectif par exemple).

git reset -=-mixed: bouge HEAD au
commit spécifié et modifie I'état de
I'index pour représenter le commit
spécifié.

git reset --hard: supprime
complétement le commit a annuler,
bouge HEAD au commit spécifié et
remet aussi I’état de I'index et du
working directory a celui spécifié. Tout
changement dans le “working directory”
pas “staged”, sera perdu.

19

EPFL Spécification d’'un ou plusieurs avec git *
reset

Par défaut c’est le dernier commit (HEAD) qui est annulé et HEAD référencé le
précédent, mais on peut tout a fait annuler plusieurs commits et spécifier le nouveau
commit a prendre en compte en utilisant HEAD~n pour revenir en arriére jusqu’a n
commits.

Par exemple avec git reset --mixed HEAD - I'état de I'index (Staging area)
correspond a son état avant les 3 derniers commits précédent HEAD, et le “working
directory n’est pas touché.

Une autre option serait d’utiliser git reset HEAD”*, HEAD* ou HEAD”2 pour indiquer
respectivement le parent direct, le parent du parent, et le deuxiéme parent (en cas de
fusion de branches).

Selon vous, comment serait la syntaxe de I'option par défaut (le dernier commit?)

=PrL

Slide Optionnel
Demo avec GIT Reset et réécriture de “I'histoire”

Demo Live :Supposer une situation ou un fichier avec des vrais mot de passe a été poussé

dans répertoire git partagé. Aprés quelques commits, on le remarque; le fichier était efface, et
un nouveau commit est poussé sans ce fichier. Toute personne qui clone/pull le répertoire a
ce moment la, n’a pas acceés a ce fichier, mais la trace dans les logs (historique) des commits
est toujours 1a, on peut méme y voir le contenu du fichier! Voici une démo de comment on
peut résoudre ce probleme en ré-écrivant I'historique de git.

22

https://gitlab.forge.hefr.ch/sandy.ingram/example-softeng-git

=PrL

—_— > —

VERSION 2

—_— > —

VERSION 1

FEATURE

D TAG: 01

RELEASE
BRANCHES DEVELOP BRANCHES MASTER

Source

GitFlow

Gitflow est pratique pour les
gros projets “open source”,
les produits complexes, et
avec des développeurs
‘juniors”. Les revues de
code s’effectuent sur les
changements des branches
concernées.

Ici on remarque des
“features branches” de
longue durée, un
processus plus formel de
déploiement avec aussi de
‘release branches”
constituant une étape
intermédiaire de test avant
le déploiement définitif sur la
branche master.

Développement Trunk-based vs GitFlow

TAG: 21

TAG: 2.0

VERSION 2

TAG: 1.0

VERSION 1

MASTER RELEASE
BRANCHES

Trunk-Based

* Dans les deux cas, le tag ou marquage du commit se fait au moment de la mise a jour de la branche master.

23

Avec moins de “formalisme”
que gitflow, le dév.
Trunk-based est

adapté aux équipes avec
développeurs “seniors”, aux
situations nécessitant des
itérations rapides, et en
début de projet.

Ici il N’y a plus vraiment de
branches “develop” ni
“release branches”
formelles. Ce qu’on
représente par “release
branches” un marquage ou
tag du commit poussé sur
master.

https://www.toptal.com/software/trunk-based-development-git-flow

25

=L Revue de codes
avec git

1. Réaliser un commit et un push vers le répertoire git “remote”.
2. Ouvrir un “Pull Request” (ou PR):
a. Sur gitlab, on ouvre un MR “Merge Request” (sachant que la commande pull = fetch + merge!)
b. Lidée est de faire une demande formelle de revue de code et approbation pour intégrer son
code d’une branche de développement dans la branche principale du projet (master).
3. Un autre développeur réalise une revue de code, fournit un feedback ni nécessaire, des changements
pourront étre nécessaires

4. Une fois la demande approuvée, la merge request est approuvée et le code est intégré.

=PFL Gestion des conflits 7

% Lors de la fusion (“merge”) de code entre deux branches, ou la mise a jour
d’'une branche locale (avec un git pull), des changements effectués dans
les mémes fichiers, peuvent générer des “conflits”
> on peut déléguer la résolution de ces conflits a git, en précisant quelle

version privilégier (--ours vs --theirs)
> ou on les résout manuellement avec 'aide d’'un éditeur de texte: en
ouvrant les deux versions du méme fichier “side-by-side” pour

comparer la différence, sachant que git marque la différence avec

(des"<<<<<<<" "z======" "So5>>55"),

) l

> Loption “Blame” permet également de voir a quel moment une ligne

dans un fichier a été modifié, par qui et dans quel commit.

=PFL - “Conventional commits”

= Des spécifications pour rendre les messages de commits, plus
“‘propres” et faciles a lire pour les humains et les machines.

type [prevent racing of requests] message de commits Exemple 1

/Iﬁtroduce a request id and a reference to latest request. Dismiss \\\
incoming responses other than from latest request.

Remove timeouts which were used to mitigate the racing issue but are
obsolete now.

Reviewed-by: Z Body et footer optionnels

\Refs: #123

[send an email to the customer when a product is shipped] Exemple 2

[BREAKING CHANGE [use JavaScript features not available in Node 6.] Exemple 3

29

https://www.conventionalcommits.org/en/v1.0.0/

30

=PFL Liens entre gitlab board “issues” et
commits

> Ultiliser dans le message du commit un croisillon (#) suivi du numéro de I'issue pour
faire un lien entre le commit et le “issue”. Normalement, un log de cette action sera
automatiquement ajouté dans le “issue” en question.

> Dans les “issues” fermés en cours, laisser un commentaire en spécifiant un lien (URL)
vers le commit réalisés, tagger les membres concernés du groupe en expliquant

brievement ce qui a été réalisé.

> Suivre la démo en classe en guise d’exemple.

31

=PFL - Attentes pour le projet

1. Message de commits selon “conventionnel commits”, historique des
commits “propres”

2. Gestion des branches avec choix clair en trunk-based development
ou git flow (ou autre approche a justifier)

3. Code review (pull request)

4. Utilisation du gitlab board pour la documentation et planification des

taches avec lien aux commits pour tache accomplies.

=PFL

B ARCHITECTURE LOGICIELLE

Réferences

. https://qgit-scm.com
. https://qgit-scm.com/docs/git-reset
. https://www.atlassian.com/continuous-delivery/continuous-integration/trunk-based-development

. https://acompiler.com/git-head/
. Extra: https://circleci.com/blog/qit-detached-head-state/
. Extra: Rebase vs Merge: https://acompiler.com/qit-head/#tve-jump-17716bdd851

w
N

Sandy Ingram

https://git-scm.com/
https://git-scm.com/docs/git-reset
https://www.atlassian.com/continuous-delivery/continuous-integration/trunk-based-development
https://acompiler.com/git-head/
https://circleci.com/blog/git-detached-head-state/
https://acompiler.com/git-head/#tve-jump-17716bdd851

